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ABSTRACT

The physics of the GrA neisen parameter for solids is investigated from

the view of conceptual and physical contributions. The relatively simple

physics of a van der Waal's gas is applied to solid densities yielding a

Grumneisen V- 'Z 2.

The separate electron and phonon contributions for metals are considered,

and it is shown that except for very high and very low temperatures the phonon

contribution dominates. Procedures for evaluating P from shock-Hugcniot

data for isotropic solids are treated, and the necessity for applying ultrasonic

data to anisotropic crystals is considered.

The role of the more exotic thermal excitations of solid state physics in

determining r is mentioned.
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I. IMTRODUCTION

Consider a system having total internal energy E, pressure P, volume V,

and temperature T. The Gru'neisen parameter, " , for that system is

defined by

f, Vk /
(wI)

V

where the derivative is to be evaluated at constant volume. As given by the

macroscopic (operational) definition of Eq. (1), [F is a measure of the

change in pressure produced by a change in system total energy under the

condition of constant volme.

As evidenced from the above definition I' is a thermo (energy)-mechanical

(pressure) quantity, and as such is expected to be important to thermomechanical

problems. A few examples of such problems are: shock wave effects (e.g.,

explosively driven shock waves in solids), the thermal expansion of solids,

and the rapid heating of materials due to their absorbing intense pulses of

nuclear radiation. In the last example "' becomes of extreme importance

since, for radiation pulse duration small compared to relevant times for acoustic

transport, the induced thermal pressure is directly proportional to P
In this report we shall consider the physics, sometimes on a microscopic

scale, responsible for the Gruneisen parameter having its observed values.

There is good reason for doing so. Presently, in the United States, technology

has outpaced science to the point where design engineers frequently find them-

selves using materials which have unknown responses to the environments in

which they are to be placed. This is especially true in the area of military

3



missile technology where very often new exotic materials are required to survive

radiation environments in which their response is unknown. Knowledge of the

Griineisen constant physics would allow an engineer to make valid estimatus for

those materials for which P has not yet been measured.

Understanding the physics of F is also quite important to the understanding

of related physics problems. One such problem area of interest is that of

electromechanical shock effects in metalt. if one analyzes shock propagation

in metals in terms of a two fluid molel )f electrons and phonons, then the

Grbneisen parameter of each componnt becomes important. Some of the analysis

presented in this report will be directed towards that problem.

So that the uninitiated reader may be eased gently into the problem we will

begin b3 treating the relatively simple problem of the Gruneisen parameter of gases.

After that we will consider some generalities of P , in particular as they apply

to solids. Finally, calculations will be made of the Gruneisen parametei for some

real systems of interest.

4



IH. GASES

A. Perfect Gases.

Consider an ideal monatomic gas with equation of state (EOS) and total

energy E given by

F'V= N1ýT E 2 (2)

. V (3)

From Eqs. (1) and (3) we find

(4)

In the above N is the number of molecules (at ms for a monatomic gas), k is
-16

the Boltzmann constant (1. 38 x 10 ergs/°Kelv-j), and T is die absolute

temperature.
5

Looking now at a gas made up of diatomic molecules with E = 2 Nkt we find
2
5 -. Consequently, a given amount of energy introduced into a diatomic gas

produces less of a pressure increase than in the corresponding monatomic gas.

This result is easy to understand; for the diatomic case some of the energy goes

into the internal energy associated with molecular vibration.

While the above example is somewhat trivial there is information of interest

contained in it because the diatomic gas has a hint of solid state behavior in it by

virtue of its internal energy. Suppose that we were able to put the energy into

the diatimic gas system in a time small compared to that necussary for transitions

5



5
between the translational states of a diatomic molecule. Since E = 2 NkTis

3
composed of 2 NkT kinetic energy associated with translational motion of the

center of mass of each molecule, and Nlkr internal energy associated with vibra-

tional states, the r' for the system would appear as shown in Fig. 1 below.

Figure 1. Gruneisen parameter
as a function of time for beam
pulse width time t. The time for
translation between vibrational2 states is tl I

0 .

ti

Fig. I shows the r that would be measured as a function of varying deposi-

tion t•ne for the system of diatomic molecules. It is to be understood that we
-14

are only talking about a thought experiment here since t , 10 se',. As an

alternative to the fast energy pulse the same results (i. e., - for a

diatomic gas system) can be achieved by imagining an omnipotent hand res ching

in and maintaining the pre-radiation separation distance, and thus the pre-

radiation state, between the atoms of each molecule.
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in and maintaining the pre-radiation separation distance, and thus the pre-

radiation state, between the atoms of each molecule.
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(other than the approximately hard sphere interaction responsible for the

volume exclusion constant b) does not appear in F . This is simply understood;

at constant volume the average intermolecular distance remains unchanged by the

addition of energy, and thus the potential energy from intermolecular interactions

remains unchanged. We are thus led to expect that the intermolecular potential

will not appear in the constant volume Gruneisen constant of a solid. Such is

indeed the case.

Suprisingly enough Eq. (8) can be used to estimate the P of a liquid or a

solid. One simple model for b has b = 4Vo , where V is the volume of a moleculo.

Applying Eq. (8) to a solid or liquid with half of its available volume occupied by

the molecules (and half otherwise empty), with the simple model for b mentioned

above, yields

+", 2 ÷ , (9)

which is a suprisingly acceptable result; with the exception of Zirconium, metals

2
have Gruneisen constants which vary between one and three at room temperature

and atmospheric pressure.

It is possible to understand the success of Eq. (9), as applied to a solid or a
3

liquid, by -')nsidering the shock compression Hugoniot EOS for a condensed

mediwr.. For volume changes small enough so that only the first nonlinear

term need be considered we can write

or upon rewriting

/ o+ -+
1 0  V (lOb)

$



where the subscript zero denotes the undeformed state, the subscript H denotes

Hugoniot, and AH, BH are characteristic of the material in question. f is the

mass density, and the primed quantities are the constants associated with the

rearrangement in Eq. (10b). The point of interest is that Eqs. (5) and (10b) have

the same functional form (AH is a function of temperature), and thus the proper

interpretation of b in Eq. (8) should lead to a proper result -- which it does.

i9



III. GENERAL THEORY

There are two ways in which to approach the problem of the Gruneisen

parameter. One method involves purely macroscopic thermomechanical

considerations, while the other involves a detailed statistical mechanics investi-

gation of the system in question. We begin with the macroscopic approach.

A. Thermomechanical Considerations.

We start with the definition of Eq. (1). For V and T independent variables we

have at constant volume

V(11)

4
It is a simple problem in calculus to show , by alternatively considering V as

a function of P and T, that

with the result

-V_ 
(12)

The derivatives of Eq. (12) each relate to easily performed quasi-static (i. e.,

non shock) laboratory experiments:

c(- Thermal expansion coefficient= .( (13a)

e Bulk modulus= - \. (13b)

C.a Heat capacity at constant volume (13c)

In termns of 4 , •, and Cv, Eq. (12) becomes

P -' \1. (14)
'V
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In the absence of rate dependent effects for the energy deposition problem

(e. g., see the discussion relating to Fig. 1) the quasi-static. result of Eq. (14)

theoretically should give the same 11 as that of the dynamic deposition experi-

ment. In practice such is not always true however, as the energy deposition

experiment measures P by measuring the pressure of the propagating shock

caused by that deposition, and effects such as attenuation and dispersion can easily

mask the correct induced pressure (and P1 ).

There is another macroscopic approach of interest, especially since it is

related to work done in the next section. It happens that, to a good approximation
5,6 , the thermal properties of solid can be reprersented by its "characteristic

termperature", G . In that approximation the internal energy can be shown 5,6

to be of the form

S(15a)

where f is a function with common form for all solids. Using the first law of

thermodynamics, and the definition of the free energy, F, of a system

F= E - TS) (16)

where S is the entropy of the system, one can easily show

F --+ TOE (17)

Eq. (17) says that F and E have the same functional form

a ) (15b)

where again g is a function with common form for all solids.

11



Again using the first law of thermodynamics, along with Eq. (16), leads

to

-(18)

T

If we break up the internal energy into a zero temperature contribution, plus a

temperature dependent part, then

E \,)T) = E0o(0 + E ,-,)(19a)

F: NT) Eo + F- •I CN,7T) - TS.N 'T-- IF, 0) + F, (\4,T 3 (19b)

F, (1 E, ( ).3(l9c)

where Eq. (19c) follows from (19b) and the third law of thermodynamics

(S Oas T-ýO).

"" " -•D4 - -i "-- (20)

where the second part of Eq. (20) follows from the characteristic temperature

approximation as given by Eq. (15b).

Operating upon Eq. (15b) it is a simple matter to show that

T (21a)

and thus

And using

1 (2T (22a)

12



in Eq. (17) gives

( T E (22b)

Substituting Eq. (22b) into Eq. (20) yields

D- E - 1tv ý-I)V (23)

where we have applied Eq. (22b) to the temperature dependent contribution alone

(subscript 1). For characteristic temperature models such as those of Debye

and Einstein, which we a temperature independent 0 , comparing Eqs. (23)

and (1) gives

r •(24)

When the Debye characteristic ( is used, Eq. (23) becomes the Debye EOS.

By using the functional details of a given G9 model, and experimental

Hugoniot data in the form of Eq. (10a), we can thus use Eq. (24) to arrive at

numerical values for P . Since the experimental Hugoniot data need not be from

energy deposition experiments (it could be the result of explosive induced shock

measurements), Eq. (24) turns out to be a very useful result. In the next section

we shall see that

P- T(25)

in terms of the coefficients of Eq. (10a).

B. Statistical Mechanics Considerations.

We immediately consider a system made up of two weakly interacting subsystems.

13



As such the formalism is applicable to such systems as fluid filled porous
7

solids , mechanical mixtures (e.g., KDNBF with diotomaceous earth - an

explosive mixture somctimes used in electro-explosives devices), and for at

least conceptual purposes to electrons and phonons in solids.

Let 9 be the partition function8 for the system.

-- = z Er; -(E-÷ E$ . (26)

where E is a total energy state of one of the subsystems, and e is the inter-r rs

action energy between the two subsystems when one subsystem has energy Er

and the other has energy Es. The sum is over all possible energy states consistent

with the total energy of the system being constant. The interaction is assumed

weak in that E and E are taken to be the subsystem energies in the absence of anyr s

interaction. The mean energy and entropy of the system are given in terms of Z

by

S= - -----" •(27a)

S + ÷(27b)

Eqs. (26) and (27) are sufficient to find the free energy, and thus the pressure, and

finally the GrUneisen parameter.
-1

Using ( = (kT) , and further defining P36 4 e- 1 for a weak interaction, Eq. (26)
rs

becomes to first order

orPE 
(28a)

or _E _~

e 5 (28b)

14
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where the subsystems are now labeled A and B, and ZA is the partition function

of subsystem "A" when that subsystem is considered to be an isolated system.

Rewriting Eq. (28b)

Thus -A " 3 + .t i- o a (29b)

and -E EA . (30)

Performing the last indicated operation in Eq. (30) giv

S,' E +,Er-) ., (31)

Similarly applying Eq. (27b) to Eq. (29b) yields

5= A SS+s CA+ a Er-Ee (32)
SZ ZNCV

and the free energy takes on the simple form

F = EA+ F-+3 I (33a)

or

F - FA± s F F,. j (33b)

which defines FAB. Although we could have guessed the result Eq. (33b) for two

weakly interacting subsystems, Eq. (33a) allows one to calculate FAB when one has

a model for the subsystems and their interaction.

15



C. General Applications.

Consider the case (e.g., a mixture of weakly interacting gases) when the sub-

systems can be considered as occupying the same volume . Then

~ F~ -(34a)

or
•V •V t"PBV -- a V )""• T (34b)

andI = FA +-- r -\4 ( \/ )r (34c)

where Eq. (1) has been used. The result Eq. (34c) is quite significant in that, even

for non-interacting subsystems, It says that the Gruneisen parameter is a weighted

average of the Gruneisen parameters of the subsystems. Eq. (34c) can, for

example, be applied to problems such as the absorption of a high intensity laser

9
beam by the air-vapor mixture in front of an irraO'ated solid surface

Let us now apply Eq. (33b) to the case of a mechanical mixture, the subsystems

(components) occupy volume separately. For brevity we neglect the interaction

energy between the subsystems. Thus

F= F (35a)

I- V/ a V . (35b)

,' F=- .•.T - -a'ai'ev"#_..FA "•L•A .- c1V"--" aF J3:q (36a)

T 4

Eq. (36a) contains the realistic assumption that F A does not depend upon VB, and

similarly for FB.

16



LVA (36b)

PV = E V L\A + P a3" (36c)

and then

E½ A -§Ek)( 4() + (36d)

The result for a mixture of two non-interacting monatomic gases can be re-

written, from Eq. (34c) and (2), as

an expected result. Eq. '6d) is thus reasonably explained as Eq. (37) plus a

volume effect. We note that, for N = NA + NB' A CB assumed, we

have [1 varying linearly betweer the extremes A A' B"

For the special case of components A and B undergoing equal straLin (containing

zero strain in both components as a special case), the solid mixture behaves as

the gaseous mixture of Eq. (37). For equal strains

WA 4va (38a)

ciVA ( d'A VS c~
' V v W1 (38b)

4 VA (38c)

17



Usin( Eq. (38c) in Eq. (36d) yields

which has r varying linearly between P and P since E = E- + E . We note
A B A B

that if the strains are equal the constant volume definition of Eq. (1) holds even for

energy deposition pulse duration large compared to the time for acoustic propagation

across a component particle; if the strains are equal they will be zero until a pres-

sure wave due to inhomogeneous deposition reaches the local observation point.

Thus for equal strains, which contains a statement concerning elastic constants,

Eq. (39) appears to hold for energy deposition times both large and small compared

to acoustic propagation times.

Tnere is another special case which can be treated analytically. If the component

strains are not equal (thus allowing local pressure relief), then for ,nergy deposi-

tion times large compared to the time for acoustic propagation across a particle

diameter

PA (40a)

and =?A'4 A\/ h ( V (40b)

\1 ) , (40c)

where PA indicates the "effective" Gruneisen constant since the constant

volume conditions of Eq. (1) are not satisfied. Alternatively, Eq.(40a) can be used

to substitute the nompressibility, K, for the volume terms in Eq. (36d).

- V(41)

18



When Eqs. (40a) and (41) are used with Eq. (36d) one gets

~+

If the approximations of Eqs. (38c) or (40a) do not hold, then Eq. (36d) must

be used aloag with a model for VA = VA (V) and VB = VB(V).

19



IV. SOLIDS

In this section we consider the individual contributions to the Gruneisen

parameter of a solid. We consider only metals because

a. The results for metals contain the results for dielectrics as a special

case.

b. As mentioned in the introduction we have a strong interest in electroniech-

anical effects in metals.

c. For the most part, aerospace materials are composed of metals,

dielectrics, or their mixture (e.g., composites). Furthtr, in present technology,

aerospace applications stand the best chance of sevng an environment where a

knowledge of the Grtineisen parameter is important.

We break up the problem into electron and phonon* contributions while

neglecting the volume dependent zero degree Kelvin cohesive energy in keeping

with the constant volume definition of Eq. (1). Thus

F (V~IT)= F,, ( VýT ) t FpC(V.) T (3T (43)

where the subscript e denotes electrons, p denotes phonons, and Ecp(V, T) the

contribution to the temperature dependent part of the free energy from electron-

phonon interactions. Even though the interaction term appears to be crucial to the

electromechanical problem, for the Gruneisen parameter problem une gets good

agreement with experiment by considering the electrons and phonons to comprise

non-interacting gases which occupy the same volume. Thus we neglect the inter-

action term and note that Eq. (34c) applies.

*A phonon is a quantized unit of lattice vibration in a normal mode system %khere

.he vibrations behave as a set of non-interacting oscillators.

20



A. Electrons.

From Zharkov and Kalinin we have for the electron system

'- I- ' (44a)

1r 3  \/ 1
V-I , -" (44b)

:. '•(.,W- •3V (T) (44c)

kz 3
04--- T)l \1---- (Tf (44d)

. [• =•.5 •(44e)

In the above m is the mass of an electron, N is the number of electrons in the
-27

system, and h is Planck's constant (h = 6.63 x 10 erg seconds). Comparing

Eq. (44e) with Eq. (3) shows that the electrons behave as if they were an ideal gas.

it
Eq. (44e) can also be derived on the more general grounds of thermodynamics

with a Pianck distribution, which then givw. Eq. (3) as a special case.

For the phonon contribution we break the problem up into low and high

temperature regimes. The reason for the separation is the radically different

functional dependence of the energy and entropy in the two regimes. The formulae

for both regimes is from reference eleven.

B, Phonons-Low Temperatures.

Er t V to ) t(45a)

Sf (\1)T)T •- T ) (45b)

FP \,-T \V-IT (2 C ), (45c)

21



VF(v3T)4. V (45d)

A ,• = • ' (45e)

PPV

In arriving at Eq. (45d) we have treated the factor of V in Eq. (45c) as a

constant. This is because the factor of V tells how much material is present

without saying anything about the structure, while the pressure is determined by

the structure. The electron subsystem was treated in the same way in that the

number of electrons, N, was taken to be constant. hl-.21rt , and c is defined by

-- ..3. ,Reproduced from .
c +c-- Io" best available (46)

where cI is the longitudional sound velocity, and ct is the transverse sound velocity.

C. Phonons - High Temperature.

At high temperatures the sums over the vibrational states become greatly
11

simplified with the result

E ( VT) M T:kT, (47a)

W --j (47b)
P D( V) T) T 17 "N T h•T - W.• t + \

where N is the number of atoms (for brevity we consider a monatomic lattice) and

W is some mean vibrational frequency associated with the lattice structure. It is

obvious from Eqs. (47) that only the entropy contributes to the pressure.

(48a)

22



If we now use the relationship from lattice dynamics

= (49)

where . is the magnitude of the state vector ., then we see that the high and

low temperature regimes yield the same result

(45e)

A few words are in order regarding the difference between ' 2/3 and the
e

result Eq. (45e). The energy of an individual phonon can be written

E = (50)

where p is "momentum" associated with the phonon state. The form of Eq. (50)

is radically different from that for the energy of a gas molecule in an ideal gas,

namely,

(51)

where m is tie molecular mass. Thus the difference between " and F is
e p

explained by the non-gas-like behavior of the phonon system.

From the discussion of section II of this report we can assume that P is ofP

order unity (we shall actually determine it later in this section), and apply Eq. (34c)

with the interaction term taken as zero to judge the relative importance of the

clectron and phonon contributions. We need only consider the ratio E e(V, T)/E p(V,T).

The ratio is calculated below for T = 300°OK (high temperature limit), for the number

of electrons equal to the number of vibrating atoms (i. e., a metal), and an electron
21 3

density of 10 per cm . The low Eemperature ratio is found to be unity at 10°K.
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High Temp.: Ee jT ) T 2 .• -r, WT (52)
-• .v (52)• •.Z• •

Low Temp.: Le (53)) Sm -i
-_ _-_ i. (53)

In Eqs. (52) and (53) we have taken a typical solid acoustic velocity, 1T, of 5 x 105 cm

per sec, and n is the density of electrons in the conduction band.

We thus see that a t room temperature only the phonon contribution is of

importance, while below 100K and above 6,000°K the electron and phonon contri-

butions are of equal magnitude.

Let us now calculate Vp from experimental shock wave data. To do so we use

Eqs. (10b), (45e), and

- (54)

In using Eq. (10b) for calculating F we are assuming that the density variationP

of PH is primarily due to phonon effects. Since for metals the electron "sound"
5- 7

(i.e., Fermi) velocity is of order 10 cm per see, which is about a factor of 20

3
larger than the observed propagation velocity for a weak shock, the assumption

would appear to be valid. The assumption is also consistent with the discussion

accompanying Eq. (52). The arithmetic is straightforward:

L(55a)

Av-

24 1 + L(55b)

Ahr 
(55c)
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is assumed, and

Eo-j " (55d)

*V~ ~ 1U- (55e)
C ~~VS A, V {iI

=. r (25)
'A4

where we have evaluated Eq. (55e) at V Vo .

Thus by using shock wave data generated by non-energy deposition experiments

(e.g., flyer experiments), we arrive at a Gruinoisen parameter for use in energy

deposition induced shock work.

Table I below compares P for three metals from Eq. (25) with the Gruneisen

parameter based upon the thermodynamic quantities of Eq. (14).

TABLE I

C OMPA RISON OF SHOCK AND THERIMODYNAMIC DATA

Aluminum 2.17 a 2.09

Copper 2.00 1.98

Lead 2.78 2.46

a. Hugoniot data from Table IV of reference 2.
b. Values from L. V. Al'tshuler et al, Soviet Phys. J. E. T. P. 11, 573 (1960)

The agreement shown in Table I is rather good, and is typical of the agreement

which one would get for a more extensive list of metals.

25



D. Volume Dependence.

It is also possible to include a volume dependence for r in the calculation

leading to Eq. (25). One need simply not evaluate Eq. (55e) at V = Vo, and for

higher volume terms simply add on additional higher order terms to Eq. (10b).

The volume dependence of Pl is indeed quite important as can be seen from the

data for aluminum (from ref. 2) given below

(v> T2( )+ - . (56)

The volume terms of Eq. (56) contribute twenty percent to [ (V) for = 1. 2,

and the result would even be more impressive if the second and third terms on the

right of Eq. (56) were not of opposite sign.

We should at this time comment on the physics of such a volume dependence,

namely where it comes from In Eq. (8) let b have a volume dependence (to be

explained shortly), and expand V as a function of volume for a small volume

change about an initial voitune V . Thus
0

( ) -t- (57)

There are two contributions to Eq. (57). The first involves the volume change

alone (i. e., AV/V ) and is explained by the observation that as the volume
0

increases the molecular voiume becomes less important; since pressure is a

measure of the statistics of particle interactions with the walls of an imaginary

container, the presence of other particles which occupy volume effects those

statistics.
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The second contribution to Eq. (57) is proportional to (db/dV), and says that

the molecular volume ic dependent upon the density of neighboring molecules. This

is understood by saying that where the volume dependence of the Gruineisen para-

meter is concerned, an exponential repulsive interaction is more appropriate than

a hard sphere interaction. Indeed, by using such an exponential repulsive term

Sirdeshmukh and Rao12 were able to derive P (and its volume dependence) for

some crystals of the fluorite structure.

Before leaving this section we wish to mention another method for arriving at

the volume dependence of the Gruneisen parameter, namely the Dugdale - MacDonald

formula 2,3. That formula is

P( p14 )-~ (58)

Eq. (57) is derived for an isotropic solid at 0°K by essentially taking the third

derivative with respect to volume of the lattice potential energy (which is assumed

to be only a function of the atomic coordinates). Eq. (58) works because, if + is

the potential energy, and if the potential is quadratic in the lattice parameter, then

. c1 75(59)

(W/21T) being the vibrational frequency of the 00 K unoccupied vibrational states.

The success of Eq. (58) is understood as the right hand side of the proportionality,

Eq. (59), is the prime ingredient of Eq. (48b).
S~3

Equation (58) is one of a whole class of relations which utilize macroscopic

PV data to arrive at a Gruneisen constant. All such relations, including Eq. (25)
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and the procedure of this section used in deriving it, assume an isotropic solid.

This means that the Hugoniot data used in arriving at P" must be in a range

where pressure is large compared to the yield stress (stress for the onset of

plasticity). This is because most of the Hugoniot data is arrived at via one-

dimensional strain experiments (e.g., flyer plate with planar geometry), with the
13

result that solids are not in an isotropic state in the region of the yield stress

The yield stress of a typical metal lies between a few kilobars and tens of kilobars.

E. Ultrasonic Data.

It frequently happens that Hugoniot data does not exist for a material. In such a

case ultrasonic data can often be used to evaluate ry . What is needed experimen-

tally is the usual apparatus for measuring elastic constants, and additional equip-

ment which allows for those measurements to be carried out as a function of

pressure (a maximum pressure of a few kilobars is usually sufficient). The theory

is relatively simple. If U- is thk stress tensor, then

C_ + (60)

where 6 kl is the strain tensor, and C and D are the second order and third order

elastic constants respectively . For a cubic crystal undergoing an isotropic volume

change, P r 1 2 V 3 ,and11 22 33'

'4 * (61)

Thus the constants C and D can be related to the constants A and B of Eq. (10a).H II

The D's are obtained through the pressure variation of the sound velocity. Eqs.

(60) and (61) when combined are of the same form as Eq. (10b).
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While the Hugoniot EOS approach to the Gruneisen constant is valid for

isotropic materials (e. g., polycrystalline metals) it is not valid for anisotropic

14
single crystals . This is because the Gruneisen parameter is really a second

rank tensor and should be defined by

F i* V (62)

Eq. (1) is then seen to be Eq. (62) applied to isotropic solids. Since the C's and

D's of Eq. (60) give all of the necessary information for evaluating the various e'e-

ments of r , the ultrasonic method is the superior tool. Indeed application of the

hydrostatic Hugoniot method to an anisotropic crystal such as Zirconium (hexagonal
15

close packed) is now known to give rP values inconsistent with thermomechanical

results because of anisotropic strain effects.

We are essentially making two points here. First, that in addition to the usual

Hugoniot data, shock wave physicists have relevant ultrasonic data at their disposal.

Second, that for anisotropic media, only the ultr-asonic data is applicable.
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V. DISCUSSION AND SUMMARY

The main intent of this report has been to give the shock wave physicist, the

prime applied user of the Gruneisen parameter, an understanding of the physics

involved in that parameter as well as the techniques in calculating it from related

data.

In this closing section we make a few points which we hope will serve to tie up

any loose strings. We also mention some relatively esoteric physics contributions

to which at this time although interesting in their own right are relatively

unimportant in applications.

Within the main text of this report we failed to mention the connection between

the characteristic G Gru)neisen parameter

- •(24)

and that arrived at through phonon considerations

[ 1 r~J =(48b)

The connection is that the characteristic temperature ( allows a characteristic

frequency, Wm m/2 IT , to be defined by

"" (63)

Thus if W has the same volume dependence as w the two approaches will give
m

the same result.

At high temperatures the detailed definition of 07 for a monatomic lattice is

11
given by

3O (64)
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where 4 is an index over the possible vibrational states of the solid. The

allowed number of W,.4 increase as W,, (a relationship known as the density of

states 1) so that we expect ý7:,- m as Wm is associated with the highest possible

energy state for a eharacteristic 0 model. Thus we are led to expect equality

in the two approaches at high temperatures.

At low temperatures a probabl!i~y factor is present (relating to the probabiltiy

that a given state is occupied 11 in the equivalent of Eq. (63). This probability

factor serves to reduce the ratio O/bj1 to zero as the temperature goes to zeo.

Since w is no longer close to W they do not necessarily have the same volumem

dependence - and indeed for many mate :ials they do not have the same volume

dependence.

Germanium offers a good example of the complications introduced by low

temperatures. Experimentally the thermomechanical Gruneisen parameter, Eq. (14),
14 a

of Germanium is negative in the region between 100 K and 400K. Yet -O-- is

determined onlý by the crystal structure and remains positive in that same region.

That low temperatures present difficulties should not be suprising as we have

already seen that electron contribution to V is equal to the phonon contribution at

about 10°K. Those interested in further details of the electronic contributions to
16

are referred to the work of Wallace .

There is another conceptual approach to the physics of the Gr'neisen parameter

which is very much worth mentioning. It is correct to think of phonons and electrons

as representing thermally excited states of a crystal lattice in the same sense as

kinetic energy is the thermal excitation of an ideal gas. But there are a host of

other possible excited states in a crystal lattice which are more or less important
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depending upon temperature, volume, and the types of atoms making up the crystal

in question. Some of these thermal excitations are listed below.
5

MAGNONS - elementary propagating magnetic
waves in paramagnetic materials.

5
EXCITONS - coupled electron-hole pair states.

ROTONS17  - elementary rotational states in a
superfluid.

ELECTRON- 5
ELECTRON PAIRS - the elementary excitations responsible

for superconductivity.
18

HELICONS - an electromagnetic excitation in a
solid state plasma.

The point is that each type of thermal excitation represents a mechanism for

storing energy. Like electrons and phonons the energy dependence of the partial

pressures contributed by those more exotic excitations must be considered in

evaluating the Gruneisen parameter.

The effect of the more exotic excitations is presently not a serious question for

the applied shock wave physicist. However, as environments change and previously

strange materials are introduced into tecimology .....
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